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Abstract
The identification of the manner in which a solute diffusion coefficient (D) might vary with
temperature (T ) in a fused metal or semimetal has led to considerable experimental study and
some theoretical analysis. However, the conclusions of this work are inconsistent. In the present
work, molecular dynamics studies of diffusion of a very dilute solute (Au) in liquid Cu are
presented. Using the simple Enskog theory of diffusion, it is shown that the ratio of the
diffusion constant of the solute to the diffusion constant of the solvent for a very dilute solution
is approximately constant. This prediction is confirmed by molecular dynamics simulations
although the values of ratios agree only within 20%–25%. In agreement with experiment,
current simulations predict that within the usually investigated temperature range, the diffusion
coefficient is linearly dependent on temperature. A very small contribution of parabolic
behavior can only be observed for a temperature range much wider than that available for
physical experiments due to materials limitations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has been noted [1, 2] that, in order to achieve optimum
control of crystal growth and casting processes involving
multi-component alloys on earth, it is necessary to develop
numerical control models. The usefulness of these will depend
on the quality/accuracy of the diffusion data incorporated;
unfortunately, current data, where available, are often widely
inaccurate.

Summaries of the most often quoted theoretical predic-
tions of this dependence are available [1–3]: each prediction
arises from a particular description of the liquid state and
the associated diffusion mechanism. Those most commonly
quoted are: D proportional to: exp(− 1

T ); T ;
√

T ; T 2;
T (1.7→2.3).
1 Present address: Department of Physics and Engineering Physics, University
of Saskatchewan, Physics Building, 116 Science Place,
Saskatoon, SK S7N 5E2, Canada.

Hence it was suggested that, by comparing the measured
temperature dependence with the theoretical predictions, some
indication of the operative diffusion mechanism should be
apparent and provide insight into the structural nature of the
host solvent.

In this work the diffusion of Au in a very dilute liquid Cu–
Au solution is studied. The rate of self-diffusion of Cu in its
liquid state is also calculated.

First a few comments on the nature of the molecular
dynamics modeling used here. In the case of liquid diffusion,
an assembly of like atoms is selected, the solvent, into which
one foreign atom, the solute, is introduced to study diffusion in
a very dilute liquid solution. The system is allowed to ‘react’,
i.e. the solute atom ‘diffuses’ by atomic collisions, as do the
solvent atoms. The manner in which the collisions take place
to effect the displacement of all the atoms is dependent upon
the interatomic potential fields seen by the solute and solvent
atoms. Thus the critical component of a realistic molecular
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Figure 1. The structure of simulated liquid copper at temperatures of
1400 and 3200 K. The larger diameter sphere represents the single
Au atom. The positions of copper atoms lying more deeply in the
cluster are given darker shades to indicate their relative distances
from the displayed surface.

dynamic simulation of the motion of the solute atom is having
a good description of the interatomic potential.

The embedded atom method (EAM) functions have
been developed [4], which describe very well the energetic,
structural and mechanical properties of solid metals and
their alloys. The EAM method is commonly used to study
the properties of metals and alloys because, in contrast to
pair potential methods (zero Cauchy discrepancy), it predicts
correctly the elastic properties, since it includes many body
interactions (through the energy term that is dependent on the
electron density). Furthermore it also has been demonstrated
that the same potentials describe very well interactions in
liquid metals: Cu, Au, Ag and Ni and, in particular, the static
structure factors calculated at 1420 K for Cu and Au agree very
well with experiment [5]. Although EAM functions could be
further refined for use in the study of liquids, in their present
forms they seem able to describe the liquid state realistically.
These potentials have also been used successfully in studying
nano-crystals [6].

2. Molecular dynamics simulations

The diffusion in this dilute liquid solution is modeled using a
cubic cluster with 863 Cu atoms and a single Au atom. Periodic
boundary conditions are used. EAM, Au–Cu potentials, are
used that were developed by Foiles et al [4] as discussed above.

Examples of the liquid structure for a cluster at 1400 and
3200 K are shown in figure 1.

The pair distribution function, calculated for simulated
liquid copper at 1395 and 3224 K average temperature, are

Figure 2. Pair distribution function calculated for simulated liquid
copper at 1395 and 3224 K temperatures.

shown in figure 2. The pair distribution function at 1395 K
agrees very well with experimental data [7] and the calculated
by MD simulation pair distribution function for liquid Cu
shown in [5]. At short distances some order is present due
to hard sphere exclusion. This order is lost at larger distances
where the pair distribution function becomes flat. As observed
experimentally [7], pair distribution functions become flatter
with rising temperature (e.g. at 3224 K, as shown below).

2.1. Mean square displacement method of calculation of
diffusion constant

When compared with what happens in a solid, diffusion in a
liquid is very fast. In figure 3(a) a two-dimensional projection
of trajectories (created during 2.5 ps) of the movement of the
Au atom at 1400 and 3200 K are shown. The overall diffusion
paths in figure 3 represent diffusion of one atom only and it
should not be compared with those associated with the changes
of solute concentration in a typical liquid diffusion couple that
is measured on the large assembly of atoms. The figure 3(a)
also demonstrates that a large number of configurations should
be used. An insufficient statistical basis, as is suggested
in figure 3(a) where the effective diffusion during random
walk is almost the same for both temperatures, may provide
misleading results. The simulation time-step used is equal to
2 fs; therefore the recorded time 2.5 ps corresponds to 1250
configurations. The diffusion length during this short time
(2.5 ps) is significant. In figure 3(b) the trajectory of the Au
atom is shown during 10k ps at 1400 K (average temperature
1395 K). At this temperature, the Au atom diffuses a distance
that is many times larger than the dimensions of the original
cluster (∼22 Å), therefore the propagating error due to the use
of periodic boundary conditions for a simple liquid is observed.

In our simulation, we have only one Au atom while in an
actual experiment, the diffusion is measured over many atoms
in a liquid state that does not have a periodic structure. The
traditional method of calculating a diffusion constant (D) as
a limit of the average value of the mean square displacement
(msd) at such a long time may lead to a less accurate result.
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Figure 3. (a) The two-dimensional trajectories (created during
2.5 ps) of the Au atom at 1400 and 3200 K are indicated. (b) The
two-dimensional projection of the trajectory of the Au atom is shown
during 10k ps at 1400 K (average temperature 1395 K). The position
of the atom at the beginning of simulation is shown as a rectangle,
whilst the triangle indicates the position of the Au atom after 10k ps.

Therefore, to eliminate any propagating errors, the diffusion
constant was calculated as an average over diffusion jumps for
the times equal to the recorded time-step (trec = 2.5 ps) with
the number of configurations (n) equal to 1250. The diffusion
constant for atom ‘i ’ was calculated using the average over all
the recorded configurations (N = 4000), i.e.,

Di = 1

6trec

1

N

N∑

j=1

3∑

k=1

(x j
k+n−x j

k )2. (1)

Altogether 5 × 106 (=n × N = 1250 × 4000) configurations
were used.

Whilst we have considered only one Au atom per cluster,
the value of Di=Au should represent a figure close to that of an
experimentally measured diffusion constant since that would
be averaged over the diffusion of all the Au atoms in the Cu in
a dilute Cu–Au liquid.

The same method was used to calculate the diffusion of
Cu atoms. However, there are NCu (863) atoms per simulated
cluster, therefore the self-diffusion of Cu is calculated by the
additional averaging over the number of Cu atoms, i.e.,

DCu(self) = 1

NCu

NCu∑

i=1

Di . (2)

In figure 4, EAM molecular dynamics simulations of the
diffusion of one Au atom in the cluster of 863 Cu atoms
are shown for the temperatures slightly above the boiling

Figure 4. EAM molecular dynamics simulations of the diffusion of
Au in Cu for the temperatures from 1400 K to slightly above the
boiling temperature for Cu (3200 K). The simulations show only
small parabolic deviation from the linear fit shown by the solid line.
The experimental data [8] together with the linear fit provided are
shown by black squares and a broken line respectively.

temperature of Cu (3200 K). The simulations agree very well
with the existing experimental data [8] but the latter are only
available for a narrow temperature range. The deviation from
the linear fit is not noticeable for the temperature range that is
used in experimental measurements (less than 1000 K) [8]. The
correlation coefficient for the presented parabolic fit is 0.9999
and it is only slightly better than the respective correlation
coefficient for linear fit: 0.9965. The calculated residuals for
parabolic fit are very small, with the largest relative residual at
low temperature equal to 1.4% while at high temperature it is
0.3%. The relative deviations for the linear fit are one order of
magnitude larger and are equal to 19% and 4%, for the low and
high temperatures respectively. The relative standard deviation
of temperature is equal to 2% for 1400 K temperature and 1.6%
for 3200 K, therefore statistical fluctuations are smaller than
the observed deviation from the linear fit at these temperatures.
The linear fit to the experimental data that was developed by
Brunson and Gerl [8] is also shown in figure 4 by a broken line
and it agrees well with the simulated points for the temperature
range used in their experiments.

The 95% confidence intervals for the linear fit are shown
in figure 5 by the dashed lines while the dotted lines indicate
prediction intervals.

3. Enskog model for a very diluted solute

It can be shown from the Enskog theory of diffusion [9] that,
for a very dilute solution, the ratio of the solute diffusion
constant, Di , to the solvent self-diffusion constant, Ds, is

α = Di(T )

Ds(T )
=

[
8 ∗ √

ms + mi

(σ s + σ i)3
√

ms × mi

]/[ √
2

σ s3
√

ms

]

= 4
√

2

(
σs

σ s + σ i

)3
√

ms + mi

mi
, (3)

where σ represents the hard spheres diameters and m the
masses of solvent (s) and solute (i ), respectively. This
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Figure 5. EAM molecular dynamics simulations for the diffusion of
Au in Cu up to slightly above the boiling temperature for Cu
(3200 K). The linear fit to simulated points (R2 = 0.993) is shown by
the solid line. The 95% confidence intervals are shown by dashed
lines, while dotted lines indicate prediction intervals.

relation is useful since it is almost temperature independent
(see appendix for approximations) and, knowing the self-
diffusion constant of the solvent, it allows an estimation of
the temperature dependence of the solute diffusion constant in
a very dilute solution. Self-diffusion can be very accurately
calculated using MD and often experimental data are available.
Knowing Ds(T ), one can get an approximate value of the
solute/impurity diffusion constant from the relation: Di(T ) =
αDs(T ), where α is approximately temperature independent.
Since for another solute/impurity ‘ j ’, we can write a
similar expression: Dj (T ) = β Ds(T ), we can conclude
that the ratios of the diffusion constant of all very dilute
solutions (in the same solvent) are not temperature dependent
(e.g. Di(T )/Dj (T ) = α/β). In the following sections
the comparison of this prediction with molecular dynamics
simulations and experiment will be given.

3.1. Enskog model and molecular dynamics prediction

In table 1 EAM molecular dynamics calculations are shown
of the diffusion constant of Au (also presented above in
figure 4) and the self-diffusion constant of the solvent Cu at
various temperatures. Although the diffusion constant is an
order of magnitude higher at the higher temperature than at a
temperature close to the melting point of Cu (1358 K), it may
be seen that the ratio of the diffusion constant of Au (solute) to
the diffusion constant of the solvent (Cu) is almost temperature
independent (last column in table 1).

However the ratios of the diffusion constants of Au solute
and Cu solvent calculated by EAM molecular dynamics do not
agree well with Enskog predictions when the diameters of Cu
and Au are assumed to be equal to the values of diameters, σo,
tabulated in [10]. Only when it is assumed that Au and Cu have
the same hard sphere diameter does the agreement becomes
better, as shown in table 2.

It may be concluded that, in this dilute state, the difference
in the hard sphere diameters of Au and Cu (both elements

Table 1. EAM molecular dynamics calculations of diffusion
constant (in 10−9 m2 s−1) of Au and self-diffusion constant of solvent
Cu at various temperatures, and the respective ratios of the diffusion
constants of solute (Au) to the diffusion constants of the solvent
(Cu).

EAM molecular dynamics calculations

T (K) DCu DAu DAu/DCu

1398 3.69 3.21 0.87
1498 4.42 3.93 0.89
1598 5.19 4.49 0.87
1699 5.99 5.25 0.88
1798 6.84 6.09 0.89
1898 7.73 6.63 0.86
1998 8.66 7.48 0.86
2098 9.61 8.19 0.85
2198 10.61 9.07 0.85
2399 12.70 10.83 0.85
2599 14.92 12.77 0.86
2799 17.26 14.74 0.85
2998 19.76 16.85 0.85
3198 22.37 18.95 0.85

Table 2. The calculated ratios (equation (3)) of the diffusion
constants for Cu and Au using various values for the ionic diameter
of Au.

Atom Mass σo (Å) [10] Di/DCu

Au 196.96 2.88 0.68
Au 196.96 2.58 0.81
Cu (solvent) 63.546 2.58 1

Table 3. The calculated ratios (equation (3)) of diffusion constants
of various very dilute impurities in a liquid Cu to the self-diffusion
constant of liquid Cu.

Atom Mass σK (Å) [11] Di/Ds

Sb 63.546 3.18 0.71
Ag 107.868 2.9 0.74
Au 196.96 2.88 0.68
Sn 118.71 3.1 0.65
Cu (solvent) 63.546 2.56 1.00

from the IB group in periodic table) does not have much effect
on the diffusion and only the differences in atomic mass are
significant.

3.2. Comparison of the Enskog prediction with experiment

In table 3, the diffusion constants ratios of various elements
as impurities in Cu (solvent) are calculated using equation (3).
The values for the hard sphere radii as tabulated by Kittel [11]
are used due to the data for Sb in [10] not being available. It
can be seen that the respective diameters for Sn, Au and Ag are
very close to that provided in [10] and also shown in table 2
above.

Bruson et al [8] provide a linear fit to their experimental
data of diffusion constants: i.e. D = A′(T − T m) + B ′.
However they did not measure the self-diffusion of Cu in the
liquid state. In table 4 (below), the respective ratios for the
provided fits versus the Au diffusion constant are shown as
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Table 4. The ratios of diffusion constants calculated from the
expressions obtained from fitting the experimental data [8] for Cu
solvent and from the equation (3).

The ratios of diffusion constants for fits
of experimental data [8] for Cu solvent

T (K) DAg/DAu DSn/DAu DSb/DAu

1400 0.94 0.95 1.22
1500 0.98 1.07 1.20
1600 1.01 1.16 1.19
1700 1.03 1.22 1.18
1800 1.05 1.27 1.17
1900 1.06 1.31 1.17
Enskog 1.08 0.96 1.05

a function of temperature. The ratios of diffusion constants
do not vary much for Ag and Sb. The variation is larger for
Sn (40%) but it is still smaller than the variation of diffusion
constant of Sn for this temperature range (120% change).
The respective values calculated using equation (3) agree with
experiment to within 40%.

4. Discussion

As it is apparent from section 2, that molecular dynamics
simulations can lead to reliable estimates of the mass diffusion
coefficient that fit closely the experimental shear-cell-derived
data of Bruson and Gurl [8]. The relationship between the
diffusion coefficient and temperature appears to depend only
very weakly on a quadratic term. Over a very large temperature
range within the liquid region, the relationship between the
mass diffusion coefficient and temperature is effectively linear.
In view of this, one might ask what other experimental
evidence is available to support this contention. Other work
by these authors [12] of self-diffusion in liquid tin using the
shear-cell technique reveals again a linear relationship between
D and T .

As noted elsewhere [1], a ‘D ∝ T ’ relationship is
found also for the fluidity and diffusivity in non-ionic aqueous
liquids if buoyancy-driven flows are suppressed. This view
has been championed by a number of researchers, particularly
Hildebrand [13].

The current molecular dynamics simulations show that the
ratio of the solute diffusion constant of very dilute solutions to
the self-diffusion constant of the solvent are not dependent on
temperature. This is in agreement with Enskog’s prediction.

5. Conclusions

(1) Molecular dynamics modeling has been used to estimate
the mass diffusion coefficient of gold in liquid copper
at selected temperatures. It was observed that the
relationship between the mass diffusion coefficient and
temperature over the entire liquid range of copper is
effectively linear and may be fitted to the relationship:
D = −9.577 × 10−9 + 8.7 × 10−12T , where T is in K
and D is in m2 s−1. The correlation coefficient for the
presented parabolic fit (D = −2.566 × 10−9 + 2.1 ×

10−12T + 1.437 × 10−15T 2) is 0.9999 and is only slightly
better than the respective correlation coefficient for the
linear fit: 0.9965. The very small parabolic deviation
would not be observed within the narrow temperature
range normally available to obtain experimental data [8].

(2) This work gives further support to the conclusions from
the QUELD II/MIM/MIR mission [1] that, for the dilute
alloy systems and temperature range used, the solute
diffusion coefficient increases linearly with temperature if
measured in a low earth-orbiting laboratory in the absence
of significant solute transport induced by the ambient g-
jitter.

(3) These two approaches i.e. the measurement of desired
diffusion coefficients in the absence of buoyancy-induced
contamination, and the equivalent molecular dynamics
simulation experiments, can provide benchmark reference
values for accurate diffusion coefficient data necessary for
use in the modeling of terrestrial liquid metal processing
systems.

(4) The ratio of the solute diffusion constant in a very dilute
solution to the self-diffusion constant of the solvent,
as predicted by the Enskog’s theory to be temperature
independent, is supported by current EAM molecular
dynamics simulations.
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Appendix

In the above derivation of equation (3), it is assumed, that
the radial distribution function of unlike atoms upon contact
is not dependent on the particular solute, which means that
|1.5(σ i − σ s)/(σ i + σ s)| is much smaller than 1 and ‘y’,
the total packing fraction used in [10], is not changed. Also
the actual radial distribution function is predicted not to be
dependent on the particular solute for a dilute alloy system.

Protopas [10] proposed that σ has a temperature
dependent factor: (1 − 0.112(T/T melting)1/2) which implies
that the hard sphere radius decreases with temperature
(equivalent to a more vigorous collision at higher temperature).
On taking this into account, we get

α(T ) = 4
√

2

⎛

⎝ σs

σ s+ 1−0.113
√

T/T mi
1−0.113

√
T/T ms

σ i

⎞

⎠
3 √

ms + mi

mi
, (A.1)

where σ i and σ s are the hard spheres diameters at 0 K and
T m are the melting temperatures respectively of the solvent (s)
and the solute (i ). The temperature dependence of the above
coefficient is negligible and when the melting temperatures of
solute and solvent are comparable the temperature dependence
cancels out.
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